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Different geometric structures are investigated in the context of discrete surface representation. It is 
shown that minimal representations (i.e., polyhedra) can be provided by a surface-based method 
using nearest neighbors structures or by a volume-based method using the Delaunay triangulation. 
Both approaches are compared with respect to various criteria, such as space requirements, compu- 
tation time, constraints on the distribution of the points, facilities for further calculations, and 
agreement with the actual shape of the object. 
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1. INTRODUCTION 

This paper is concerned with computational structures between points lying on 
the boundary of a three-dimensional object. Our motivation comes from a number 
of problems in pattern recognition, computer vision, and graphics, where objects 
are known by the three coordinates of a set of points selected on the boundary 
of  t he  object .  T h e  l i s t  o f  t h e i r  c o o r d i n a t e s  is a p o o r  r e p r e s e n t a t i o n  of  t h e  objec t .  
A s t r u c t u r e  on  t h e  se t  of  p o i n t s  is n e e d e d  in  o r d e r  to  m a k e  e x p l i c i t  t h e  p r o x i m i t y  
r e l a t i o n s h i p s  b e t w e e n  p o i n t s  on  t h e  su r face  o f  t h e  objec t .  S u c h  s t r u c t u r e s  have  
b e e n  u sed  to  solve  m a n y  p r o b l e m s ,  i n c l u d i n g  d e f i n i t i o n  o f  t h e  s h a p e  of  t h e  ob jec t  
[18, 22], c o n t r o l  o f  t h e  a u t o m a t i c  m a c h i n i n g  o f  su r f aces  [4], s m o o t h  i n t e r p o l a t i o n  
b e t w e e n  t h e  p o i n t s  [6] or, c o n t r a r i w i s e ,  r e d u c t i o n  o f  t h e  n u m b e r  o f  p o i n t s  w i t h o u t  
g rea t ly  d a m a g i n g  t h e  a c t u a l  s h a p e  of  t h e  ob jec t  [5], a n d  c a l c u l a t i o n  o f  g e o m e t r i c a l  
p r o p e r t i e s ,  such  as  a rea ,  vo lume ,  axes  o f  i ne r t i a ;  d e f i n i t i o n  o f  t h e  n o r m a l s  o f  t h e  
su r face  a t  t h e  po in t s ,  a n d  e x t r a c t i o n  o f  e l e m e n t a r y  shapes .  
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There are situations in which a partial structure between the points is explicitly 
given by the way the points are measured. Such is the case for an image where 
every pixel can be easily related to its neighbors. Such is also the case for three- 
dimensional data when the measured points lie on specific curves [8, 16]. In these 
cases, appropriate solutions can be found, but there are still some restrictions. 
For example, the approach used in [8] to solve the important case of points lying 
on parallel slices is restricted to slices composed only of a single connected 
contour. Furthermore, the a priori structure imposed by the way the points are 
measured does not correspond necessarily to the actual structure imposed by the 
metric of the surface. These criticisms become crucial when the points are 
measured in some more general way, perhaps from different points of view, using 
several sensors, or during a controlled motion of the object and/or the sensor. 
Each set of data gives us partial information concerning the structure, say a view 
of one face, a slice, or a more complex section. The problem remains to complete 
and integrate this information into a single description of the object as a whole. 
But since the means necessary to accomplish this task differ so much from one 
installation to the next, and because the task may, in fact, be an extremely 
complex one in many typical installations, we propose to take the point of view 
that n o  a p r i o r i  s t r u c t u r e  e x i s t s .  We feel this approach has the advantages of 
simplicity and general applicability. 

The general problem can be formulated in the following way: We want to 
represent and make calculations on a three-dimensional shape whose boundary 
is a surface S on which a set M of N points M 1  • • • M N  are known by their three 
coordinates. To do so, we have to create some relations between the points, 
constituting what we call a structure that is precisely defined as a graph whose 
vertices are the given points M and whose edges join points that are related in 
some sense. 

Among the different structures, the minimal ones (i.e., those with the fewest 
edges and that preserve the topology of the surface) play an important part; it is 
the first purpose of this paper to produce such minimal structures. A minimal 
structure is the graph of a 3-polyhedron with the measured points as vertices. In 
the general case no four points are coplanar; such a polyhedron is simplicial, that  
is, triangularly faceted. Of course such a polyhedron is not unique, and the 
characterization of a polyhedron that suitably approximates the initial surface is 
not easy. Among the possible solutions, O'Rourke [13] suggested polyhedra of 
minimum area, but this criterion may yield strange results, as is shown in 
Figure 1. Furthermore, there exists no good algorithm that computes polyhedra 
of minimum area. Other criteria related to the curvature of the surface may be 
preferred, as in [2]. In addition to the geometrical difficulty, there is a combina- 
torial one. In R 3 a general simplicial polyhedron is defined as a collection T of 
triangles (a triangulation) satisfying the following three conditions [9]: 

(1) Two triangles are either disjoint, or have one vertex in common, or have two 
vertices and consequently the entire edge joining them in common. 

(2) T is connected. 
(3) For every vertex V of a triangle of T, the edges opposite V in the triangles of 

T having V as a vertex form a simple polygon (see Figure 2). 
ACM Transac t ions  on Graphics,  Vol. 3, No. 4, October 1984. 
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Fig. 1. A(O, - 1 ,  1), B(O, 1, 1), C(x, -1 ,  0), C ' ( -x ,  -1 ,  0), D(x, 1, 0), D ' ( -x ,  1, 0), 
E(O, O, h). If x and h are sufficiently small, the  area of the  polyhedron on the  left is 
smaller than  the  area of the polyhedron on the right. 

Fig. 2. Some configurations tha t  are not  allowed. 

Clearly, making all the possible combinations is not feasible.This paper pro- 
poses two ways of reducing the complexity of the problem. The first idea is to 
use explicitly the fact that  the points lie on a surface that is known to be, at least 
locally, diffeomorphic to R 2. If we can exhibit such a diffeomorphism, we unfold 
the surface and reduce the dimension of the space in which we are working. Such 
an idea is used by many authors, especially geographers, when they project their 
three-dimensional data onto a plane; but this has to be done injectively, which is 
impossible in many cases, as, for example, for closed surfaces. This idea has also 
been used for closed surfaces when we know, apart from the three coordinates of 
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the points, some local properties of the surface at these points, namely, the 
normals and the sign of the Gaussian curvature [2]. We consider here the general 
case, in which only the three coordinates of the points are known. The above 
idea can be used again locally. This is shown in Section 2. 

A second idea is to use a global structure on the points, from which minimal 
representations and other features can easily be obtained. In Section 3 the well- 
known Delaunay triangulation is considered in that respect. 

Advantages and disadvantages of both methods are discussed in relation to 
different criteria, such as space requirement, computation time, constraints on 
the distribution of the points, facilities for further calculations, and correspond- 
ence with the actual shape of the object. The performances of both methods must 
be compared with the minimal requirements needed for such a problem. The 
number of vertices N, edges E, faces F, and handles H of a polyhedron are related 
by the Euler formula, which states that  N - E + P = 2 - 2H [9]. It follows that 
a simplicial polyhedron with H handles has 2N - 4 + 4H faces. A solution to the 
triangulation problem consists of a set of the faces, and thus the minimal storage 
requirement is O(N). A lower bound to computing time is given by the convex 
case, which, in turn, can be reduced in O(N) additional operations to the planar 
case by means of a stereographic projection (i.e., a projection of the convex body 
onto a plane containing one of its faces from the point of the body most distant 
from that plane). The complexity of a planar triangulation is O(N log N)  [17], 
so the complexity of any algorithm constructing a triangulation is at least 
O(N log N). 

2. SURFACE-BASED APPROACH 

2.1 Theoretical Background 

The aim of this section is to build a triangulation of the surface S by means of a 
local procedure. We proposed to make use, in the neighborhood of a point M, of 
the orthogonal projection p onto the tangent plane P of S at M. The proposition 
below gives the size of a domain in which this projection is a diffeomorphism; so, 
for that domain, triangulation in P provides a triangulation of S. The proofs in 
this section come from differential geometry. They are omitted here. 

PROPOSITION 1. Let S be a smooth surface in three-dimensional (3-D) space 
whose principal radii of curvature exceed R at every point. Let p denote the 
orthogonal projection on a tangent plane P of S at M. Then there exists an open 
set U of S such that p is a diffeomorphism from U onto any disk lying in P whose 
center is M and whose radius is smaller than R (see Figure 3). 

It must be noted that the hypothesis implies that p(U)  cannot fold over itself, 
and so a triangulation with straight edges in P will correspond to a triangulation 
with straight edges on S. 

Moreover, we can control the validity of the method as is claimed by 

PROPOSITION 2. If  every point of S is nearer than e from a point of the triangular 
mesh, the projection p allows the construction of a triangulated surface which 
approaches the region U of S in the following sense: p does not move the points of 
S more than e2/R. 
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If we want to control this homeomorphism at the first order (for instance, if 
we want lengths and areas not to be greatly changed), we require that the 
constructed triangles not be too thin. In general, this can be achieved by choosing 
a sufficiently regular triangulation, such as the Delaunay triangulation, which 
builds the most equiangular triangulation [9]. 

Several remarks of importance for the sequel must be made. 

(1) The propositions above guarantee a triangulation of the surface if the 
discretization is fine enough. More precisely, in the neighborhood of a point, the 
discretization must be finer than the smallest radius of curvature at this point. 
It must be noted that not even a rough approximation can be guaranteed if the 
number of points is not sufficiently large. 

(2) The method is not canonical: In particular, when applied to two neighbor- 
ing points, it does not necessarily give the same result. Some care will be required 
in the implementation. 

(3) Although the method can approximate first-order quantities, it cannot 
preserve, in general, the second-order quantities. An example is given in Figure 
4, where the local convexity of the surface (defined by the sign of the Gaussian 
curvature of the surface) is lost. 

2.2 Implementation 

An algorithm looking for a triangulation of the surface in the previous manner 
must successively achieve 

(1) the definition, for each point, of its neighbors; 
(2) the initialization of the triangulation process; 
ACM Transactions on Graphics, Vol. 3, No. 4, October 1984. 
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(3) the growth of the triangulated domain by successively adding new points to 
the mesh. 

Before the triangulation process starts, the neighborhood of each point is 
defined as the set of its k nearest neighbors. For the neighborhood of a point 
such a definition allows nonuniform density of points and efficient computation. 
Finding the k nearest neighbors is a classical problem for which fast solutions 
have been proposed. One such solution makes use of a data structure called the 
k-D tree. In [7] it is shown that the time and space required to build a k-D tree 
are, respectively, O(Nlog N )  and O(N). The expected k-nearest-neighbors search 
time is shown to be O(k logN), which is O(logN) if k is independent of N. 

Then the triangulation process can start. At each step of the process three 
entities are updated: 

(1) the triangulated domain D, which is a set of the previously created triangles; 
(2) the contour C of the triangulated domain, which is a doubly linked list of 

nodes--each node Mi of C is defined by its label Mi, the labels of the previous 
and the following nodes on the contour, pM and fM, and the label iM of the 
point inside the triangulated domain, which makes a triangle with Mi and 
fM; such a structure for the contour allows it to be modified very easily when 
creating a new triangle and allows us to calculate, for each edge M~fM of C, 
an approximation of the tangent plane around that edge, the plane of the 
triangle M~fM-iM ; 

(3) the set O of the points that are not yet inside the triangulated domain. 

The initialization is performed by defining a first edge which joins a point I0 
and its nearest neighbor/1. The corresponding contour C is composed of the two 
edges Io-I1 and Ii-Io. The points iIo and iI~ are taken in the approximate tangent 
plane, defined by a least square method applied in the neighborhood of Io-I1. 
Then the triangulation is developed by propagating C. This propagation is done 
by looking around an edge E of C so that point Mk of O in the neighborhood of 
E must be taken into account in creating a new triangle. The choice of that best 
point Mh is done in the approximate tangent plane by choosing the point such 
that p(Mk) sees p(E) under the largest angle. Then we add Mh to C and the 
triangle E-Mh to D. Eventually 0 is updated, and the process continues. 

Owing to the Euler formula, the storage requirements for D, C, and O are of 
size O(N), and so the total requirement is also of size O(N). Because the procedure 
is a local one and because, at each step, we build a new triangle, the complexity 
of the method is O(N) if the neighborhood of each point is known. If we use a k- 
D tree to define such neighborhoods, the total complexity is O(NlogN). 
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2.3 Validity of the Method 

According to the theoretical results, the validity of the method is ensured, and 
so a polyhedral surface is obtained if the neighborhood of each edge is isotropic 
and does not fold over itself when projected onto the tangent plane. These two 
conditions may give rise to incompatible choices for the k number of neighbors. 
Indeed, the first condition requires k to be sufficiently large, whereas the second 
requires k to be sufficiently small. This difficulty comes, in part, from the fact 
that the Euclidean distance does not always suitably approximate the metric of 
the surface. A way of bypassing this difficulty, if a great number of points are 
available, is to take a rather large value of k and eliminate those neighbors that  
stand higher from the tangent plane than a given value. 

Another difficulty comes from the fact that  the method is not canonical. We 
have to ensure that  the triangles do not cross one another. This is done by testing 
around each vertex of a new triangle to determine whether its edges actually lie 
outside D. This is readily performed owing to the doubly linked structure of C. 

An implementation of this algorithm has been written in Pascal and has run 
on a number of well-sampled objects. A triangulation of a torus is shown in 
Figure 5. Figures 6 and 7 show results on real data provided by a laser range 
finder. 

ACM Transactions on Graphics, Vol. 3, No. 4, October 1984. 



Geometric Structures for Three-Dimensional Shape Representation 273 

3. VOLUME-BASED APPROACH 

3.1 Theoretical Background 

In the previous section a polyhedral representation was obtained by pruning an 
initial graph, defining for each point its nearest neighbors using the Euclidean 
distance. The discretization might satisfy some constraints, giving rise, in the 
case of complex objects, to some of the difficulties discussed in Section 2. In 
order to avoid these difficulties, we use the Delaunay triangulation of the points 
M as an intermediate structure. It will be shown that such a geometrical structure 
defines neighborhoods that  are symmetrical, isotropic, and closely related to the 
metric of the surface. Moreover, it is a global structure that will allow the 
extraction, in any case, of a minimal representation of the shape. The result will 
be a better and better approximation of the shape as the number of points 
increases. 

Let us recall the definition of the Delaunay triangulation and some general 
results. More details can be found in [15], [17], and [19]. For a D-dimensional 
Euclidean space E and a set M of N points M1 • • • NN, the associated Voronoi 
diagram is a sequence (V~ .- .  VN) of convex polyhedra covering E, where Vi 
consists of all the points of E that have Mi as a nearest point in the set M. Thus 

Vi = {PEE:  Vj, 1 _< j _< N, d(P, Mi) -< d(P, Mi)} 

where d denotes the Euclidean distance. 
The geometrical dual of the Voronoi diagram, obtained by linking the points 

Mi whose Voronoi polyhedra are adjacent, is called the Delaunay triangulation 
of M. Although the dual graph is usually considered an abstract graph expressing 
the topological relationships of the Voronoi polyhedra, our concern here is to 
take the joins to be straight-line segments and to use them as a framework for a 
simplicial subdivision of space. Figure 8 shows an example of a Voronoi diagram 
and its dual in a two-dimensional simple case. In the three-dimensional case, it 
can be shown that two elements are disjoint or have one vertex in common, or 
that they have two vertices and consequently the entire edge joining them, or 
that they have three vertices and consequently the entire face joining them. 
Moreover, the union of the elements of the Delaunay triangulation is equal to 
the interior of the convex hull of M. Owing to the definition, when no five points 
are cospherical, the elements of the Delaunay triangulation are tetrahedra, and 
the circumspheres (the Delaunay spheres) do not contain any point of M in their 
interior. In the case of more than five cospherical points, the elements can be 
decomposed into several tetrahedra so that, in every case, the Delaunay trian- 
gulation is composed of tetrahedra. Moreover, the Delaunay triangulation asso- 
ciates with each point Mi a set of at least three neighbors Mi, which are, roughly, 
the nearest neighbors of Mi in the different directions. Indeed, consider an 
inversion with Mi as center, which associates with a point Mi the point M[, on 
the ray MiMj, whose distance from Mi satisfies the equation MiMi .MiM ~. = k 2. 
The reciprocal images of the half-spaces limited by the faces of the convex hull 
of the images M[ • .. M~ of M~ • • • MN are the interiors of the spheres passing 
through Mi and three other points of M (the corresponding two-dimensional case 
is shown in Figure 9). Because such half-spaces are empty, the interiors of the 
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corresponding spheres are also empty; moreover, these half-spaces are the only 
empty half-spaces passing through three points of M, so the spheres are the 
Delaunay spheres passing through Mi. Thus, the neighbors of Mi are the points 
Ms, whose images by an inversion with Mi as center are the vertices of the convex 
hull of the images of M1 . . .  M N .  

So the Delaunay triangulation is a 3-connected graph on M embedded in R 3, 
which defines symmetrical and isotropic neighborhood relationships between the 
points. It is to be noted that this is not necessarily the case of the k nearest 
neighbors or of other geometric structures included in the Delaunay triangulation, 
such as the minimum spanning tree, the Gabriel graph, or the neighborhood 
graph. Moreover, the Delaunay triangulation contains polyhedra and satisfies 
the first and second conditions of the definition of a polyhedron (cf. Section 1), 
which will appear to be a decided advantage. 

One more advantage of the Delaunay triangulation is that it can be computed 
efficiently. Klee [11] placed a lower bound on the worst case complexity of any 
algorithm computing the Delaunay triangulation by proving that the number of 
tetrahedra in the Delaunay triangulation of N points is at most O(N2). No known 
algorithm reaches this bound, but an algorithm with an O(N 2 logN) lower bound 
can be easily deduced from the above. We have shown that finding the neighbors 
of a vertex in the Delaunay triangulation of N points is equivalent to computing 
a convex hull of N points. This can be done in O(NlogN) time, and this is 
optimal [14]. Computing the entire Delaunay triangulation consists of finding 
the neighbors of the N vertices or, equivalently, of computing N convex hulls, 
which can be done in O(N21ogN) time. 

In addition to the general results mentioned above, we now give some specific 
properties that are due to the fact that the points M lie on a surface. Let us 
introduce these properties in the case in which the density of the points M 
increases indefinitely. In such case, the Delaunay spheres become tangent to the 
surface S of the object and are by the maximal spheres, whose centers constitute 
the skeleton of the object. Moreover, we can say something about the curvature: 
At a convex or parabolic point M, if one of the principal curvatures is sufficiently 
large, the Delaunay sphere cannot touch another region of S; since it does not 
contain any point in its interior, one of the radii of the Delaunay spheres passing 
through M is equal to the smallest radius of curvature. At a saddle point this is 
true on both sides of the tangent plane: The two radii of the two Delaunay 
spheres are equal, respectively, to the radii of curvature at M. 

Thus we can control to some extent the local behavior of the Delaunay 
triangulation. Moreover, if we want to extract from the Delaunay triangulation 
a correct approximation of the surface, it is necessary that the Delaunay trian- 
gulation contain a polyhedron that  respects the relative locations of the points 
on the surface. More precisely, this polyhedron must be diffeomorphic to a curved 
polyhedron tightly stretched on the surface passing through the points M. Owing 
to the definition, this condition is satisfied as soon as there exists a set of spheres, 
each of which passes through the vertices of one of the above curved triangles 
and does not contain any point of M in its interior. It is to be noticed that this 
condition is not very restrictive; in particular, very thin parts (with respect to 
the discretization) can be allowed, provided that there is enough free space 
around. See Figure 10. 
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Fig. 10. The edge AB belongs to the Delaunay 
triangulation of the boundary of the object. 

The preceding results show that, under weak assumptions, the Delaunay 
triangulation contains a polyhedron that suitably approximates the surface of 
the object. There remains the problem of the extraction of this polyhedron from 
the Delaunay triangulation. The method of Section 2 can, of course, be used, but 
the drawbacks of that local method can be avoided here owing to the properties 
of the Delaunay triangulation. Moreover, instead of purely surface information, 
the following method directly provides both surface and volumetric representa- 
tions. 

3.2 Sculpture 

The Delaunay triangulation fills the interior of the convex hull of points M with 
tetrahedra. First, let us consider the case in which this convex hull contains all 
the points M: The Delaunay triangulation is a volumetric representation of the 
object. The object is represented by a set of tetradedra; the boundary of that set, 
the convex hull of M, is a polyhedral approximation of the surface of the object, 
the best possible one according to such criteria as minimum area, minimum 
variation of curvature, or distance between the polyhedral approximation and 
the object. 

If not all the points are on the convex hull, we must eliminate tetrahedra until 
all the points M are on the boundary P of the polyhedral shape so obtained. This 
sculpture of the convex hull can be done sequentially, by eliminating one 
tetrahedron after another in such a way that, at each step, P satisfies the 
definition of a polyhedron. It can easily be proved, by looking at all the possible 
configurations (see Figure 11), that this is guaranteed when the following rule is 
respected. 

Rule. The only tetrahedra that can be eliminated are those with exactly one 
face, three edges and three points on P, or those with exactly two faces, five 
edges and four points on P. 

It can be proved that any polyhedron of genus O inside the Delaunay triangu- 
lation can be obtained by such a procedure. 

At each step of the sculpture, the set S of the noneliminated tetrahedra is 
stored as a set of 4-tuples Ti = (Mli, M2i, M3i, M4i) with an adj.acency graph that, 
for each tetrahedron, gives its adjacent tetrahedra in S (Tli, T2i, T3i, T4i). Tji is 
ACM Transactions on Graphics, Vol. 3, No. 4, October 1984. 
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Fig. 11. The rule of Section 3.2 allows the  elimination of te t rahedra  of  
types (d) and (i) and forbids the elimination of types (b), (c), and (e)-(h); 
otherwise, a point  will be isolated (b) or the surface will intersect  i tself at  
one point  (h) or along an edge (c), (e)-(g). The te t rahedra  of  type (j) are 
not  considered. The  te t rahedra  of type (a) cannot  occur because the 
te t rahedra  of  type (b) cannot  be eliminated. The numbers  are, respectively, 
the number  of  faces, edges, and points  on P.  

the tetrahedron opposite Mji; that is, with Ti it shares the face whose vertices 
are the Mki, k # j. As a convention, Tji = 0 if the face whose vertices are the Mki, 
k # j ,  is a face of the boundary P of S. A value is associated with each tetrahedron 
of S having at least one face on P. This value is used to sort the tetrahedra. The 
tetrahedra with the largest values are eliminated first. The choice of a criterion 
defining these values may depend on the application. We propose to associate 
here with the tetrahedron T~, the value V(Ti) defined as the maximum distance 
between the faces of T~ on P, and the associated parts of the circumscribed sphere 
of Ti. When the density of points on the boundary of the object is sufficiently 
large, the value of any tetrahedron having a least one face on P and belonging to 
the interior of the object is smaller than the value of any tetrahedron belonging 
to the exterior of the object. 

It has to be noted that  the elimination of several tetrahedra may only add one 
point to the boundary P of the polyhedral shape. For example, in Figure 12, I is 
added to P after the elimination of the two tetrahedra ABCI and BCDL So the 
algorithm cannot simply stop when all the points lie on P. Let us call V the 
maximum value of V(T3 for all the tetrahedra inside P. V measures the goodness 
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h 

/ 
Fig. 12. 

of the approximation of P by the set of the Delaunay spheres corresponding to 
the interior tetrahedra. In our implementation the algorithm stops when no point 
of M can be added to P and no tetrahedron can be eliminated without decreasing 
V. Owing to the remark above, this guarantees that  the algorithm produces a 
correct polyhedral approximation when the density of points is sufficiently large. 

At the end of the sculpture, the object is represented by the set S of the 
noneliminated tetrahedra. The boundary P of this set is the polyhedral approxi- 
mation of the surface of the object. 

The algorithm is roughly described as follows: 

(1) P ~-- convex hull; S ~-- Delaunay triangulation; mark the points Mi and the edges 
MiM i of the convex hull. 

(2) Build a heap containing the tetrahedra having a face on P, sorted according to the 
criterion. 

(3) While the rule is not violated, 
(a) consider the tetrahedron T and S having the largest value--if all the measured 

points are not yet on P or if the removal of T causes V to decrease, then remove 
T; 

(b) evaluate the neighbors Ni of T, insert them into the heap, and replace T by 0 in 
the set of neighbors of the N~; 

(c) update the sets of vertices and edges of P. 

Let us now analyze the complexity of the algorithm. In Section 3.1 we have 
proposed an algorithm computing the Delaunay triangulation whose worst case 
complexity is O(N 2 logN). Other algorithms for computing the Delaunay trian- 
gulation of a set of N points in any dimension have been proposed in the 
literature [3, 10, 20]. Although in the three-dimensional case the number of 
tetrahedra in the Delaunay triangulation may be O(N 2) [11], no such case has 
been experienced for fairly regular distributions of points on a closed surface. In 
the cases of practical interest, when fast nearest neighbor search techniques are 
used [1, 3], the algorithms appear to be almost l inear--step (1). In order to 
update the set of the tetrahedra of S rapidly, we arrange them as a heap [21]. To 
arrange N elements as a heap takes O ( N l o g N )  time and to update the heap after 
each elimination of a tetrahedron takes O(logN) time. If Q is the number of 
points on the convex hull of M, the number of tetrahedra having a face on the 
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(a) (b) 

(c) (d) 

Fig. 13. 

convex hull is O(Q), and it takes O(Q log Q) time to build the initial heap, which 
is step (2). In almost every case, when adding a new point to P, the number of 
the eliminated tetrahedra is independent of N, so step {3) is scanned O(N) times. 
If we use the data structure described above, testing whether the rules are violated 
and steps (3b) and (3c) require only constant time; so it takes O(log(Q + 1)) 
+ . . .  + O(logN) time to take into account the ( N -  Q) points not belonging to 
the convex hull, which is less than O(NlogN). In the very exceptional case in 
which we may have to eliminate N tetrahedra when adding a new point to P, the 
total complexity remains lower than O(N 2 log N). 

An implementation of this algorithm has been written in FORTRAN. Figures 
13 and 14 show results on two synthetic objects. Figure 15 shows a result for real 
data provided by a laser range finder. In each case several steps of the sculpture 
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(a) (b) 

(c) (d) 

Fig. 14. 

are shown. The hidden lines being removed, the points interior to the convex 
hull appear progressively on the boundary. 

3.3 Applications and Extensions 

3.3.1 Automatic Modeling off Three-Dimensional Objects. The above procedure 
requires only weak restrictions of the discretization and so is general and robust. 
It can be used as an automatic modeler able to handle complex objects. It gives 
a respresentaion of the volume of an object (a set of tetrahedra) and also a 
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(a) (b) 

(c) 

(e) 

(d) 

(f) 

(g) 

Fig. 15. 

representation of the surface of this object (a polyhedron, which is the boundary 
of the set of tetrahedra). Moreover a by-product of the method is the convex hull 
of the approximated shape of the object. When we use the Delaunay triangulation 
and the so-called "sculpture," several applications become straightforward. We 
just mention some of them. 
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(1) The mass properties (volume, center of mass, moments of inertia, etc.) can 
be calculated by looking at the mass properties of the set of the interior tetrahedra. 
The volume is the sum of these elementary volumes, the center of mass is the 
center of gravity of the centers of mass of the different tetrahedra weighted by 
their volume, etc. 

(2) The equilibrium positions are obtained by looking for the faces of the 
convex hull of the object, which is approximated by the boundary of the Delaunay 
triangulation; the faces contain in their interior the normal projection onto them 
of the center of mass. 

(3) The interior tetrahedra constitute a mesh, which can be used to perform 
stress and thermal analyses by means of finite-element techniques. This mesh 
can be improved by adding new points in the interior of the object in order to 
obtain more regular tetrahedra. These new points may be the center of mass of 
the overelongated tetrahedra. 

(4) Cruder polyhedral approximations can be performed by eliminating points 
producing elongated tetrahedra. This can be done very easily if, as is the case in 
[3], [10], and [20], the algorithm computing the Delaunay triangulation is 
implemented as an iterative procedure in which the points are added one after 
another and the triangulation is updated after each insertion. Only points 
significantly contributing to the shape of the object can be retained, thus reducing 
the storage requirements. 

3.3.2 Other Dimensions. The method also applies in the planar case when the 
points belong to a simple closed curve. The shape is represented by a set of 
triangles (2-simplices) instead of tetrahedra (3-simplices) in the three-dimen- 
sional case. The only modification concerns the rule of Section 3.2, which must 
be replaced by the following: only the triangles with two vertices on P can be 
eliminated. Figure 16 shows several steps of the sculpture of a set of points 
belonging to a planar contour. Another example is shown in Figure 17. Although 
we have not tried to do so, there is no theoretical difficulty in applying the 
method to higher dimensions. 

3.3.3 Skeleton. Even in the two-dimensional case, computing the skeleton of a 
polyhedron is a difficult task [12]; the above method provides a polyhedral 
approximation of the skeleton of an object which is the subset of the Voronoi 
diagram inside the polyhedral shape provided by the sculpture. This approxi- 
mation, which is the skeleton of the union of the Delaunay spheres associated 
with the simplices interior to the shape, converges toward the actual skeleton 
when the density of points increases. The skeletons of the objects of Figures 16 
and 13 are shown in Figures 18 and 19, respectively. Related applications include 
computation of the lengt h of an object and decomposition of an object into 
convex or pseudoconvex parts. 

3.3.4 Shape Hull. Finally, let us mention another extension: the definition of 
the shape hull of a dot pattern. This can be done by a procedure analogous to 
the "sculpture" procedure. The only difference consists of stopping the process 
when the criterion reaches a given value. 
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Fig. 17. 

This paper is an initial exploration of the numerous applications of the 
Delaunay triangulation in the field of the computational geometry of surfaces. 
Of course, much work remains to be done and we just mention three unsolved 
problems: 

(1) Given a set M of N points, does there exist a criterion for sorting the set 
of all the polyhedra having M as vertices such that relative to this criterion, the 
minimal polyhedron is sure to be one contained in the Delaunay triangulation? 

(2) Is the number of tetrahedra smaller than O(N 2) if the points are fairly 
regularly distributed on a closed surface? 

(3) The procedure "sculpture" produces a simple polygon in the plane, a simple 
polyhedron in three-dimensional space passing through N points, and, therefore, 
can be considered a heuristic for the Traveling Salesman problem and its 
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Fig. 19. 

generalization in three-dimensional  space. Do there  exist bounds to the behavior 
of such a heuristic? 

4. CONCLUSION 

Two main approaches have been proposed for representing three-dimensional  
shapes defined by a set of N points on their  boundary.  The  first uses some results 
in differential geometry and takes advantage of the fact tha t  a surface in R 3 is 
essentially two dimensional.  Such a method  only requires storage proport ional  
to O(N)  and, when using a k-D tree, t ime proport ional  to O ( N l o g N ) .  Moreover,  
theoretical  results guarantee the quality of the approximation.  But  the approach 
is, by nature,  local and can only be applied if the discretization is fine enough. 
The  second approach takes into account  the discrete nature  of the problem and 
uses a global data structure,  famous in the field of computat ional  geometry: the 
Delaunay triangulation. This  method  is more costly in the worst case, 
O(N 2 logN) ,  but  is general and makes many  applications straightforward. 
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